Site icon Early Retirement Now

An Updated Google Sheet DIY Withdrawal Rate Toolbox (SWR Series Part 28)

Since I first published Part 7 of the SWR Series with the accompanying Google Sheet in early 2017, I’ve made several changes and enhancements. Sometimes without much explanation or documentation. So, it would be nice to do a quick update and itemize the changes since then. Whether this is the first time using the toolbox or you check it out again after more than a year, I hope you all find the new features useful…

Here again is the Google Sheet Link:

Link to the EarlyRetirementNow SWR Toolbox v2.0

As always, please save your own copy because the current (clean) version posted on Google Sheets has to be write-protected so visitors don’t mess around with my formulas! You will be asked to create your own personal copy, which you can edit! 🙂

Also, if the Google Sheet and all the options seem intimidating, my friends Jason and Eric at Two Sides of FI put together a video tutorial on YouTube explaining how to get started with this toolkit.

Main Tab: more detailed results

As before, you enter almost all parameters in the main tab “Parameters & Main Results.” All fields in Orange are user inputs, such as:

Main Parameters. Same as before but I added the Fama-French Small Cap Style (SMB) and Value Style (HML)!

The main results table is pretty large so I split it in two, the first part is below:

Main Results: The top panel shows the failure rates of specific initial withdrawal rates. The bottom panel goes the other way around: Specify a certain failure rate and find the initial withdrawal rate that would have generated that failure rate.

And Part 2, see below. The table has the same format as the first part, but now the columns are conditional on how far the S&P 500 index is away from its most recent high. Why does this matter? The stock market is a Random Walk and past returns have no bearing on future returns, right? Wrong! As is well-known in finance and as I pointed out in a post a few months ago, stocks have the tendency to mean-revert. So, expected returns tend to be higher after a steep drop and lower after a long run-up in stock prices. That’s reflected in the failure probabilities of the 4% Rule below. The unconditional failure probability was just under 10%, but it was 18.55% when we were at the market peak. So, failure probabilities are indeed impacted by past returns. File this as another piece of evidence that the stock market isn’t exactly a Random Walk!

Why is this relevant? Well, on August 22, 2018, the market just became the longest-running bull market in history (though not everyone agrees on the definition of the longest bull market, see this article on Bloomberg). If history is any guide the retiree in this numerical example will be wise to be more cautious with the initial withdrawal rate and not just blindly apply the 4% Rule mantra. Maybe withdraw a little bit less, 3.25-3.50% to have a bit a cushion. In other words, after a potential drop in the portfolio the effective withdrawal rate might reach 4% right around the time when the S&P had a ~20% drop, which is when, historically, the 4% becomes very safe again!

Same as Part 1 of the results table but conditional on the equity drawdown

I also added a small table with the fail-safe withdrawal rates in five important time intervals around stock market peaks. That’s because I usually like to see during what period the all-time fail-safe occurred. Most of the time it’s either 1929 or the 1960s, depending on the stock vs. bond. vs. cash allocation! It’s always amazing to see that the 1970s and early 80s recessions did an even worse trick on the mid-60s retirement cohorts than the ones that retired around the 1973 market peak!

Fail-safe Withdrawal Rates in five different bear markets.

Supplemental cash flows: now easier to input!

One of the biggest challenges for folks trying to use this spreadsheet used to be how to correctly enter the supplemental cash flows. I tried to make this a little bit easier and more intuitive, so I created a separate tab, appropriately named “Cash Flow Assist” to help with that. At the top, we can input the initial portfolio value and a projected inflation rate to discount the value of any non-inflation-adjusted future cash flows, e.g., corporate pensions, etc. in the orange fields below. As always, it’s best to go through a simple example:

How do we input all of this? At the top of the page we input the net worth and an inflation figure and leave the other orange fields empty (=$0) for now because there are no supplemental cash flows during the first year, see below:

Enter the Net Worth today and the inflation assumption. Cash flows don’t start until later, so the other orange fields are left blank (=$0).

Next, we input the corporate pension, starting after 11 years (month 133), see below. Notice that we input this in the fifth column where the non-COLA cash flows reside. So, this will be discounted to make sure it’s comparable to today’s real dollars!

Next, the Social Security payments start 25 and 26 years into retirement, see below. The benefits are inflation-adjusted so they are entered in the corresponding columns with COLA cash flows:

And, finally, the additional budget for medical expenses, care, nursing homes, etc., see below. This is now inputted as a negative cash flow!

In the “green” column on the right, the program translates the different cash flows into percentages of the initial portfolio:

Monthly supplemental cash flows as a % of the initial portfolio.

Also in the same tab is the same table that showed up in the main tab but the percentages are translated into withdrawal amounts in dollars p.a.:

Translate withdrawal percentages into dollars p.a. for this numerical example.

Fama-French Style Factors (since 1926)

I added that feature pretty early in the spring of 2017, mostly out of curiosity about how much of a difference some of the widely cited style premia such as value and size would have made. See Ken French’s site for the data and more documentation on the construction of the Fama-French factors. For example, let’s simulate the following scenarios:

  1. The 80% S&P500 baseline
  2. Keep the overall equity share at 80%, but use a 25% small caps and 25% value stocks tilt: Set the SMB and HML allocation to 25% each. Make sure you keep the overall stock allocation at 80%!
  3. Keep the overall equity share at 80%, but use 50% growth stocks. Set the HML allocation to -50%. Again, make sure you keep the overall stock allocation at 80%!

The small-cap plus value bias would have easily lifted the SWR to above 4%, see table below. But I’d probably not get too excited about this result. There’s no guarantee that the size and value premium will persist forever and continue to help future retirees. All this could just be backward-looking bias. Certainly, in 1926 nobody would have known about the work by Fama and French. In fact, if you had been wrong and bet on the wrong style, for example, “growth” instead of “value” you would have totally ruined your safe withdrawal rates. Fail-safe withdrawal rates are now in the low 2% range. Ouch!

Fail-safe initial withdrawal rates for different equity style premia.

Case Study: glide path simulation

In the tab “Case Study” where you can simulate one single time series of the portfolio values for a specific starting date and initial withdrawal rate, I also added a simple glidepath simulation for comparison (see Part 19 and Part 20 of the SWR Series). This is the simplest possible version with just the static glidepath going between two different equity weights in fixed steps (e.g. 0.3% per month) and investing the residual in bonds, see below:

Compared to an 80/20 static stock/bond allocation, the glidepath would have made a huge difference during the Great Depression! But glidepaths were not a panacea because, during the 1970s, bonds offered much less diversification.

A portfolio with a 4% initial WR and 80/20 fixed allocation would have run out of money after less than 25 years. A Glidepath would have performed much better!

Simulate CAPE-based Withdrawal Rules

I added another tab to simulate CAPE Rules with different parameters. Just as a recap, the CAPE-based rule, in its simplest form, expresses the annualized target withdrawal rate as a+b times the inverse of the Shiller CAPE (=CAEY = Shiller Earnings yield). See Part 18 for more details and why I like this approach. My preferred rule would be to set the intercept to around 1.5-1.75% and the slope to one-half. In the example below I use 1.75%/0.50. Notice that a constant percentage rule would be a special case if we set a=4% (or whatever rate you like) and b=0, i.e., withdraw 4% p.a., regardless of equity valuations.

Running out of money is no longer an issue with the CAPE-based rules. Failure comes in the form of deep and extended cuts to consumption. So, to compare how much (or how little) I like different CAPE I tend to look for 3 key stats:

  1. What’s the change in real, inflation-adjusted withdrawal amounts over a 30-year horizon?
  2. Notice that the point-to-point comparison over 30 years can deep cuts in spending, so I also like to know the lowest withdrawal amount relative to the initial withdrawal amount
  3. And finally, what’s the average over the 30-year window relative to the initial amount?

See below for a numerical example:

January 1970 cohort: Time series of 12-month rolling withdrawals and the three measures I calculate.

I’m interested in how the three measures would have evolved in the worst-case scenarios, so I calculate them for different time intervals (all months vs. 1926 onward) as well as the worst-case scenarios in the five different “troublemaker” retirement cohorts (Great Depression, the 1960s, early 1973, Dot-Com bust and Great Recession), see the table below. I also add the volatility of year-over-year withdrawals and some stats on the withdrawal rates implied by this CAPE rule:

CAPE parameters and main results.

A little side note: I frequently get questions and comments about the CAPE parameters just like recently when a reader wondered why I assign a weight of 0.5 on the CAEY. Shouldn’t the withdrawal rate be less volatile with a higher intercept and lower slope? Yes, but as a retiree, I’m less worried about volatility in withdrawal rates and more worried about volatility in withdrawal amounts. So if I were to set the intercept to 3% and the slope to 0.3 I’d have a more volatile stream of withdrawals, see below. And the more you reduce the slope parameter the closer you get to the good old constant percentage rule where your withdrawals become just as volatile as the portfolio itself!

A higher intercept and lower slope. The withdrawal rates are less volatile but the withdrawal amounts become more volatile!

I guess it’s up to you and what you feel comfortable with but I like the way the CAPE rule cushions the volatility in withdrawal amounts, see below:

From the SWR Series, Part 18: Under the constant percentage rule, the withdrawals will move in sync with the portfolio value. In contrast, tying the withdrawals to economic fundamentals has the potential to soften the fall in withdrawals in case of a bear market!

OK, so much for today! I hope you enjoy the new features! Please let me know if you find bugs or like to suggest more features!

Thanks for stopping by today! Please leave your comments and suggestions below! Also, make sure you check out the other parts of the series, see here for a guide to the different parts so far!

Also notice, all the usual disclaimers apply!

Picture Credit: Pixabay

Exit mobile version